Concepts:
Example: Internet search (page order on search page)
Adjacency matrix: $$A=\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$ $a_{ij}\ne0 \Leftrightarrow$ there is an edge from $v_i$ to $v_j$.
Edges may have weights (e.g. edge length):
$$A=\begin{pmatrix}
0 & 0.5 & 4 & 1\\
0.25 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
$A$ of undirected graph is symmetric:
$$A=\begin{pmatrix}
0 & 0.5 & 4 & 1\\
0.5 & 0 & 0 & 4 \\
4 & 0 & 0 & 0 \\
1 & 4 & 0 & 0
\end{pmatrix}$$
$a_{ij}=a_{ji}\,\forall i, j$
A scalar is a vector (or a matrix) with 1 element.
$\begin{pmatrix}2\end{pmatrix}\begin{pmatrix}3\end{pmatrix}=\begin{pmatrix}6\end{pmatrix}$
$\begin{pmatrix}2 & 1 \\-1 & 2\end{pmatrix}\begin{pmatrix}1 \\ -1\end{pmatrix}=\begin{pmatrix}1\\-3\end{pmatrix}$
$\begin{pmatrix}2 & 1 \\-1 & 2\end{pmatrix}\begin{pmatrix}1&2 \\ -1&1\end{pmatrix}=\begin{pmatrix}1&5\\-3&0\end{pmatrix}$
$I_{2\times2}=\begin{pmatrix}1 & 0\\0 & 1\end{pmatrix}$
$\begin{pmatrix}2 & 1 \\-1 & 2\end{pmatrix}\begin{pmatrix}0.4&-0.2 \\ 0.2&0.4\end{pmatrix}=\begin{pmatrix}1&0\\0&1\end{pmatrix}$
They are eigenvectors.
If $Av=\lambda v$ then
$$A=\begin{pmatrix}1 & -1 \\-1 & 1\end{pmatrix}$$
$$R(u) = \sum_{\forall (v, u)} \frac {R(v)} {Nv}$$
$$a_{ij}=$$
$R$ is an eigenvector with eigenvalue $1$!
Users stay with probability $d$ --- the damping factor
. \begin{align} R = & \frac {1-d} N\mathbf{1} + dAR,\, d \le 1 \,(\approx 0.85) \\ = & \left( \frac {1-d} N \mathbf{E} + dA \right)R \end{align}$$a_{ij}=$$
$R$ is an eigenvector with eigenvalue $d < \pmb{\lambda} < 1$!